Analysis and Design of Beams for Bending
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Introduction

* In this chapter, we will study the analysis and
design of beams.

» Beams are structural members supporting loads
at various points along the member. They are
usually long, straight prismatic members.

In most cases, the loads are perpendicular to the
axis of the beam (transverse loading) causing
only bending and shear in the beam.

Normal stress is often the critical design criteria
_[Mle _[M]
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where [ is the moment of inertia of the cross section with respect to a
centroidal axis perpendicular to the plane of the couple, v is the dis-
tance from the neutral surface, and ¢ is the maximum value of that dis-
tance (Fig. 4.13). We also recall from Sec. 4.4 that, introducing the

elastic section modulus § = I/c of the beam, the maximum value o,
of the normal stress in the section can be expressed as M|
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Introduction — Classification of Transverse Loading

 Transverse loadings of beams are classified

as concentrated loads or distributed loads.

P P,

L.
Ir‘ A i{)

(a) Concentrated loads

(b) Distributed load
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Introduction - Classification of Beams

» Beams are classified according to the way in which they are supported.

Eeams

L

{a) Simply supported beam (b} Overhanging beam () Cantilever beam
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(el ) Continmons beam (¢) Beam fixed at one end { ) Fized beam
and simply supported
at the other end
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Shear and Bending Moment Diagrams

' . e Determination of maximum normal and

_rl l [e shearing stresses requires identification of
: maximum internal shear force and bending

couple.

Shear force and bending couple at a point are
determined by passing a section through the
beam and applying an equilibrium analysis on
the beam portions on either side of the
section.

Sign conventions for shear forces Vand V’
and bending couples Mand M’

=) (e gy ()

i) Intem al forces (b Effect of external forces i) Effect of E::-:tem al forces
{positive shear and positive bending moment) { positive shear) (positive bending moment)

Fig. 5.7
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Example 5.01

EXAMPLE 5.01

Draw the shear and bending-moment diagrams for a simply
supported beam AB of span L subjected to a single concen-
trated load P at it midpoint C (Fig. 5.8).

1
TL

-

We first determine the reactions at the supports from the
free-body diagram of the entire beam (Fig. 5.9a). we find that
the magnitude of each reaction is equal to P/2.
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Example 5.01

Next we cut the beam at a point [ between A and C and
draw the free-body diagrams of Al and DE (Fig. 595). As-
suming that shear and bending moment are positive, we direct
the internal forces V and V' and the internal couples M and
M’ as indicated in Fig. 5.7a. Considering the free body AD
and writing that the sum of the vertical components and the
sum of the moments about D of the forces acting on the free
body are zero, we find V = +P/2 and M = + Px/2. Both the
shear and the bending moment are therefore positive; this may
be checked by obzerving that the reaction at A tends to shear
off and to bend the beam at I as indicated in Figs. 5.7b and c.
We now plot Vand M between A and C (Figs. 5.94 and ¢); the
shear has a constant value V = P/2, while the bending mo-
ment increases linearly from M = O at x = 0 to M = PL/4
at x = L/2.

Cutting, now, the beam at a point E between C and B and
considering the free body EB (Fig. 5.9¢), we write that the sum
of the vertical components and the sum of the moments about
E of the forces acting on the free body are zero. We obtain
V=—-P/2and M = P{L — x)/2. The shear is therefore neg-
ative and the bending moment positive; this can be checked
by observing that the reaction at B bends the beam at E as in-
dicated in Fig. 5.7¢ but tends to shear it off in a manner op-
posite to that shown in Fig. 5.7h. We can complete, now, the
shear and bending-moment diagrams of Figs. 5.94 and e; the
shear has a constant value V = — P/2 between C and B, while

the bending moment decreases linearly from M = PL/4 at
r=L2twM=0ax=L.
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Example 5.02

EXAMPLE 5.02

Diraw the shear and bending-moment diagrams for a cantilever
beam AF of span L supporting a uniformly distributed load w
(Fig. 5.10).

We cut the beam at a point C between A and B and draw
the free-body diagram of AC (Fig. 5.11a), directing ¥ and M
as indicated in Fig. 5.7a. Denoting by x the distance from A
to C and replacing the distributed load over AC by its result-
ant wx applied at the midpoint of AC, we write
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Example 5.02

We note that the shear diagram is represented by an oblique
straight line (Fig. 5.116) and the bending-moment diagram by

a parabola (Fig. 5.11¢). The maximum values of Vand M both
occur at B, where we have

V= —wlL  My=—}twl?

(=

If we have a clockwise external moment, we will go up in M-diagram.

Sl \While drawing the V and M diagrams from left to right

Fig. 5.11
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Sample Problem 5.1

SOLUTION:

 From the FBD of entire beam,
determine the reaction forces.

250 mm
a4 Section the beam at points near
gﬂ, J:} supports and load application points.
Apply equilibrium analyses on
resulting free-bodies to determine

For the timber beam and loading internal shear forces and bending

shown, draw the shear and bend- couples.
moment diagrams and determine the
maximum normal stress due to
bending.

Identify the maximum shear and
bending-moment from plots of their
distributions.

Apply the elastic flexure formula to
determine the corresponding
maximum normal stress.
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SOLUTION:

4iv - From the FBD of entire beam, determine the
reaction forces as below;
YF,=0 & > M;=0: R;=46kN R, =14kN

 Section the beam and apply equilibrium analyses

on resulting free-bodies
>Fy=0 -20kN-V; =0 Vy = —20kN

>M;=0 (20kN)YOm)+M;=0 M;=0

>Fy=0 -20kN-V,=0 V, = -20kN
>My=0 (20kN)(25m)+M,=0 M, =-50kN-m

V3 =+26kN Mgz =—50kN-m
Vy =+26kN My =+28kN-m
Vg =—14kN Mg =+28kN-m
Vg =-14kN Mg =0
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Sample Problem 5.1

* |dentify the maximum shear and bending-
moment from plots of their distributions.

|

t Vip =26kN M, =|Mp|=50kN-m
2 m>f=—3 m——=2m

» Apply the elastic flexure formula to

+96 kN determine the corresponding ’ 250

maximum normal stress. g
80 mm

_1pp2 _1 2
S =zbh® = £(0.080m)(0.250m)

—833.33x10 % m?3

Mg 50x10°N-m
S 833.33x10°°m?

Om

o = 60.0x10° Pa|= 60 MPa
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Relations Among Load, Shear and Bending Moment

» Relationship between load and shear:
>Fy=0: V-(V+AV)-wAx=0

AV = —-WAX
Dividing both members of the equation by Ax and then letting Ax ap-
proach zero, we obtain

(5.5)

Integrating (5.5) between points C and D, we write

V, — V. = —(area under load curve between C and D) (5.6")

 Relationship between shear and bending m%ment:
SMe =0: (M+AM)=M -V Ax+wa7X =0

AM =V Ax —%W(AX)Z

Dividing both members of the equation by Ax and then letting Ax ap-
proach zero, we obtain

M + AM M_y
dx

Gl Integrating (5.7) between points C and D, we wrile
V + AV

MD—MC:J V dx

K

My — M- = area under shear curve between C and D




\% AN
Example 5.03

EXAMPLE 5.03

Draw the shear and bending-moment diagrams for the simply
supported beam shown in Fig. 5.13 and determine the maxi- L L L
|

mum value of the bending moment.

A

From the free-body diagram of the entire beam, we de-
termine the magnitude of the reactions at the supports.

R, = Ry = 3wl LH
A[

Next, we draw the shear diagram. Close to the end A of the
beam, the shear 15 equal to B4, that is, to %wL, as we can check
by considering as a free body a very small portion of the beam. Fig. 5.13

- -
Ry = 7wl Rg= 7wl
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Example 5.03

SRR

A [ T e B
'n_l_ fwl Ry .'fu.-'_t
Using Eq. (5.6), we then determine the shear V at any distance
x from A, we write

X
V—V,=—| wdr= —ux
‘o

V=V, — wr=3wl — wx =wilL — x)

The shear curve is thus an oblique straight line which crosses
the x axis at x = L/2 (Fig. 5.14a). Considering. now., the bend-
ing moment, we first observe that M, = 0. The value M of the
bending moment at any distance x from A may then be ob-
tained from Eq. (5.8), we have
"X
M-My= | Vdx
‘0
"X
M= | w3l — x)dx = Aw[ﬂx — x)
Jo
The bending-moment curve is a parabola. The maximum value
of the bending moment occurs when x = L/2, since V (and
thus dM/dx) is zero for that value of x. Substituting x = L/2
in the last equation, we obtain M. = wl?/8 (Fig. 5.14b).

V = -w.Xx+¢;

M = -w.x%/2+c,.x+C,

At x=0, M=0 Then ¢,=0

At x=L, M=0 Then ¢,=w.L/2

Finally; V = -w.x + w.L/2 = w.[(L/2)-x] and
M = -w.x2/2+wW.x.L/2 = (W/2).(L.X-X?)
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Sample Problem 5.3

BOKN  54kN 22 b SAMPLE PROBLEM 5.3

Dirawr the shear and bending-moment diagrams for the beam and loading shown.

Lan F‘*’ ey SOLUTION
¥

90 kM 54 kN

A l l 1 +5EM, = O
| F Di7.2m) — (0 KNW1.8 m) — (34 kNWd.2 m) — (328 kN)WBR4d m) = 0

Reactions. Considering the entire beam as a free body, we write

+TEF}.=D: Ay, —O0 KN — 54 kN + 1156 kN — 528 kN =0

A, = + B12kN A, =0812kNT
LEF, =0 A, =0

L, A
' B C 91 D = 1156 kN D=1156kNT
Ay D

18m| 24m | 3m
90kN  S4LkN

We also note that at both A and E the bending moment is zero; thus, two points
(indicated by dots) are obtained on the bending-moment diagram.

Dt Shear Diagram. Since dV/dx = —aw, we find that between concentrated

loads and reactions the slope of the shear diagram is zero (i.e., the shear is con-
stant). The shear at any point is determined by dividing the beam into two parts
and considering either part as a free body. For example, using the portion of
beam to the left of section . we obtain the shear between B and C:

+T ZF, =0 +81L.2KN —9Q0kKN — V=0 V= —BEkN

We also find that the shear is +52.8 kN just to the right of D and zero at end E.
Since the slope dV/dx = —aw is constant between [ and E. the shear diagram
between these two points is a straight line.

115.6 kM
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Sample Problem 5.3

VikN)
5l n| Bending-Moment Diagram. We recall that the area under the shear
- (4 146.2) curve between two points is equal to the change in bending moment between
the same two points. For convenience, the area of each portion of the shear di-
(—2L1) agram is computed and is indicated in parentheses on the diagram. Since the
'r= bending moment M, at the lefi end is known to be zero, we write

L My — M, = +1462 Mgz = +1462 kN - m
Mg —Mg=—-21.1 Mg.= +1251kN*m
M, — Mo= —1884 M, = —633kN-m
My — Mp= +633 My=10

Since Mg is known to be zero, a check of the computations is obtained.
Between the concentrated loads and reactions the shear 1s constant; thus,
the slope dM/dx is constant and the bending-moment diagram is drawn by con-
necting the known points with straight lines. Between [} and E where the shear
diagram is an oblique straight line, the bending-moment diagram is a parabola.
From the V and M diagrams we note that V,,, = 81.2 kN and M, =
146.2 kKN » m.
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Sample Problem 5.4

'

|C
B

20 kN/m

ERREE!

I

40 kN

kM - m
M 120 kM - m

+ |+ |F

L xr

A

Alternatively, x can be found by using similar triangles.

SAMPLE PROBLEM 5.4

The W3i60 x 79 rolled-steel beam AC is simply supported and carries the uni-
formly distributed load shown. Draw the shear and bending-moment diagrams
for the beam and determine the location and magnitude of the maximum nor-
mal stress due to bending.

SOLUTION

Reactions. Considering the entire beam as a free body, we find
R, =80kNT R.=40kNT

Shear Diagram. The shear just to the right of A is V, = +80 kIN. Since
the change in shear between two points is equal to minus the area under the
load curve between the same two points, we obtain Vi by writing

Vg — Vy = —(20kN/m){(6 m) = —120 kN
Ve=—120+ V, = —120 + B0 = —40 kN
The slope dV/dx = —w being constant between A and B, the shear diagram

between these two points is represented by a straight line. Between B and C,
the area under the load curve is zero, therefore,

Ve— Vp=10 o= Vp= —40kN
and the shear is constant between B and C.

Bending-Moment Diagram.  We note that the bending moment at each
end of the beam is zero. In order to determine the maximum bending moment,
we locate the section I of the beam where V = 0. We wrile

Vip— Vy = —wx
0 — 80KN = —(20 kN/m)x

and, solving for r=4m -
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Sample Problem 5.4

The maximum bending moment occurs at point [}, where we have
dM/dx = V = 0. The areas of the various portions of the shear diagram are
computed and are given (in parentheses) on the diagram. Since the area of the
shear diagram between two points 12 equal to the change in bending moment
between the same two points, we write

My, — M, = +160kN +m Mp= +160kN - m
My —Mp=— 40kN - m Mg = +120kN - m
M-—Mg= —120kN - m M-=10

The bending-moment diagram consists of an arc of parabola followed by a seg-
ment of straight line: the slope of the parabola at A is equal to the value of V
at that point.

Maximum Normal Stress. It occurs at D, where |M| is largest. From
Appendix C we find that for a W360 = 79 rolled-zsteel shape, § = 1280x10% mm?3
about a  horizontal axis.  Substituting  this  value and Ml =
|Mp| = 160 % 10° N - m into Eq. (5.3), we write

M 160 % 10° N -
o= Mol _ —— = 125.0 X 10° Pa
5 1280 = 10 " m

Maximum normal stress in the beam = 125.0 MPa
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Design of Prismatic Beams for Bending

» The largest normal stress is found at the surface where the
maximum bending moment occurs.

_ ‘M ‘maxC _ ‘M ‘max
| S

Om

A safe design requires that the maximum normal stress be
less than the allowable stress for the material used. This
criteria leads to the determination of the minimum
acceptable section modulus.

Om = Og||

« Among beam section choices which have an acceptable
section modulus, the one with the smallest weight per unit
length or cross sectional area will be the least expensive
(i.e. the cheapest) and the best choice for the design.
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90 mm

NEREN R - SAMPLE PROBLEM 5.7

i
A o I'a I“ A 3.6 m-long overhanging timber beam AC with an 2. 4-m span AR
T is to be designed to support the distributed and concentrated loads
| shown. Knowing that timber of 100-mm nominal width (90-mm ac-
[ tnal width) with a 12-MPa allowable stress is to be used, determine
the minimum required depth £ of the beam.

SOLUTION

Reactions. Considering the entire beam as a free body, we wrile
+5EM, = 0: B(24m) — (144 kN)1.2m) — (20 kN)(3.6 m) = 0
B=1372kN B =372kNT

+,2F, = 0 A, =10

+1ZF, = 0: A, + 37.2kN — 144kN — 20kN =0
A, = —28kN A =28kN]

Shear Diagram. The shear just to the right of A is Vy = A, = —28 kN.
Since the change in shear between A and B is equal to minus the area under
the load curve between these two points, we obtain Vg by writing

Vg — Vi = —(6 kN/m)(2.4 m) = —144 kN
‘g=Vy— 144kN = —28 kN — 144 kN = —17.2 kN

The reaction at & produces a sudden increase of 37.2 kN in V, resulting in a
value of the shear equal to 200 kN o the right of . Since no load is applied
between & and C, the shear remains constant between these two points.
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Sample Problem 5.7

Determination of |M|,,.. We first observe that the bending moment is
equal to zero at both ends of the beam: My, = M- = (. Between A and B the
bending moment decreases by an amount equal to the area under the shear

curve, and between B and C it increases by a corresponding amount. Thus, the
maximum absolute value of the bending moment is |M|p,, = 24 kN - m.

Minimum Allowable Section Modulus, Substituting into Eq. (3.9) the
given value of oy and the value of |M| 4, that we have found, we write

M 24 kN - m .
= | |m'u = = 2% 10° mm’
i 12 MPa

Il;"u:n'u:u

Minimum Required Depth of Beam. Recalling the formula developed
in part 4 of the design procedure described in Sec. 5.4 and substituting the val-
ues of b and 5.;,. we have

Eibh: = Smin %(EH] mm]h: =2% 10°mm’° h=

The minimum required depth of the beam is h=36mm
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_ 50 kN
20 kN ‘ SOLUTION:
C

‘ 1 i ¢ J l ¢ ‘ 1 L? » Considering the entire beam as a free-
A- E_ body, determine the reactions at A and

. bm L Develop the shear diagram for the
A simply supported steel beam Is to beam and load distribution. From the

diagram, determine the maximum
bending moment.

carry the distributed and concentrated

loads shown. Knowing that the

allowable normal stress for the grade

of steel to be used is 160 MPa, select Determine the minimum acceptable

the wide-flange shape that should be beam section modulus. Choose the

used. best standard section which meets this
criteria.
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Sample Problem 5.8

60 kN

IRER

50 kN

wrrrwlc D

L = =

-
A, ‘
A_” ] 5 m->r1Hm>

1 m

+(67.6)

1m 'D

D

x=26m

X

« Considering the entire beam as a free-body,
determine the reactions at A and D.
>Mp =0=D(5m)-(60kN)1.5m)—(50kN)(4m)
D =58.0kN
> Fy =0=A, +58.0kN-60kN -50kN
A, =52.0kN

» Develop the shear diagram and determine the
maximum bending moment.
Va = Ay =52.0kN

Vg —V, = —(area under load curve)=—60kN
Vg = -8kN

» Maximum bending moment occurs at
V=0orx=2.6m.

M| . = (area under shear curve, AtoE)

=67.6KN




